
Received: 9 January 2022 Revised: 17 October 2022 Accepted: 8 November 2022

DOI: 10.1002/cpe.7531

R E S E A R C H A R T I C L E

Software code refactoring based on deep neural
network-based fitness function

Chitti Babu Karakati1 Sethukarasi Thirumaaran2

1Department of Information Technology,

R.M.K. Engineering College, Kavaraipettai,

Tamil Nadu, India

2Department of Computer Science and

Engineering, R.M.K. Engineering College,

Kavaraipettai, Tamil Nadu, India

Correspondence

Chitti Babu Karakati, Department of

Information Technology, R.M.K. Engineering

College, Kavaraipettai, Tamil Nadu, India.

Email: mailtocbabu@gmail.com

Summary

Refactoring is extensively recognized for enhancing the internal structure of

object-oriented software while preserving its external behavior. However, determin-

ing refactoring opportunities is challenging for designers and researchers alike. In

recent years, machine learning algorithms have shown a great possibility of resolv-

ing this issue. This study proposes a deep neural network-based fitness function

(DNNFF) to resolve the software refactoring issue. This study suggests an effective

learning technique that automatically featured extracted from the trained models

and predicted code clones to recommend which category to refactor. The software

engineers automatically assess the recommended refactoring solutions using Genetic

Algorithms (GA) for minimum iterations. A Deep Neural Networks (DNN) utilizes

these training instances to assess the refactoring solutions for the residual itera-

tions. The refactoring process primarily depends on software designers’ skills and

perceptions. The simulation findings demonstrate that the suggested DNNFF model

enhances the code change score of 98.7%, automatic refactoring score of 97.3%,

defect correlation ratio of 96.9%, refactoring precision ratio of 95.9%, flaw detection

ratio of 94.4%, and reduces the execution time of 10.2% compared to other existing

methods.

K E Y W O R D S

deep neural network, genetic algorithm, machine learning algorithms, software code refactoring

1 INTRODUCTION TO SOFTWARE CODE REFACTORING

Refactoring is a set of program transformations envisioned to enhance the system design while conserving the desired behavior, becoming a vital

software maintenance action, particularly with the rising complexity of software systems.1 Software Refactoring involves changing the application’s

internal structure or design without changing its external behavior or functionality.2 The semantics of the code before and after refactoring remain

the same. Refactoring benefits software development by making programs more understandable and easily discovering software bugs quicker.3 For

software to be useful, it must constantly change. The technology’s initial design changes as it adjusts to the new surroundings.4 The complexity of

the code increases due to modifications and enhancements, which lowers the system’s performance. These variables increase the time and expense

of software maintenance.5 Keeping the source code is one of the most demanding when developing and evaluating software. Changes are unavoid-

able for software to stay current, useful, and high-quality.6 When the structure of a code element is mistakenly anticipated, or the response by the

programmers is wrongly conceived, bad odors are generated in a software system.7 A code smell indicates a more serious problem in technology.

Because they show a flaw in the software’s architecture that could result in a future breakdown, they are not defects; nonetheless, they can be legally

accurate.8

Concurrency Computat Pract Exper. 2023;35:e7531. wileyonlinelibrary.com/journal/cpe © 2022 John Wiley & Sons, Ltd. 1 of 15
https://doi.org/10.1002/cpe.7531

https://orcid.org/0000-0001-6260-6858
http://wileyonlinelibrary.com/journal/CPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.7531&domain=pdf&date_stamp=2022-11-23


2 of 15 CHITTI BABU AND SETHUKARASI

Manually inspect source codes to determine refactoring opportunities.9 Multiple tools for an automatic suggestion of refactoring prospects

have been presented.10 In fully automated refactoring, designers offer their code as input, and the tool automatically gives refactoring recommen-

dations.11 The mainstream of existing automated refactoring tools assumes that designers want to fix code smells.12 The refactoring method can be

used to identify and correct code odors. Refactoring can be used to improve poorly designed code and turn it into something usable.11 Refactoring

can enhance the technology’s exterior characteristics, such as renewability, maintainable code, and legibility.13 Understanding the most common

code smells, the most common refactoring strategies, and the program measurements that strongly affect them is essential to improving software

quality.14 In this situation, reformation is required to change legacy or deteriorated code into a more structured or modular form or migrate code to

the various programming languages or language models.15

The users usually define the rules manually, a tedious and challenging task.16 Learning from data utilizing machine learning algorithms can sup-

port extract regulations, and for this method to succeed, a substantial amount of information must be fed into algorithms it can learn.17 Likewise, the

search-based algorithm aims to identify a bad smell based on the values of pre-described metrics.18 The introduction of machine learning algorithms

that spontaneously features extracted from the predicted code clone.19 Then trained models to recommend designers on the refactored clone codes

categories and those that are not refactored.20 A system based on deep learning that recommends the essential clone for refactorings could be use-

ful.21 Refactoring opportunity prediction has been defined as a binary classification issue and deployed deep learning algorithms to resolve it.22 The

models categorize a particular refactoring type and a regular class utilizing the metrics as features. Numerous deep learning experiments have been

intended based on an empirical study of the refactorings.23

The main influence of the article is as follows:

• Designing the DNNFF model for software code refactoring using a genetic algorithm.

• Evaluating the mathematical model of genetic algorithm and deep neural network for software code refactoring.

• The investigational outcomes have been completed. The suggested DNNFF model enhances the code change score, automatic refactoring score,

defect correlation ratio, refactoring precision ratio, flaw detection ratio, and execution time related to other existing models.

The rest of the article is arranged: Section 2 discusses the related works on software code refactoring. In Section 3, the DNNFF model has been

suggested, and in Section 4, simulation analysis has been performed. Finally, Section 5 concludes the study article.

2 RELATED WORKS ON SOFTWARE CODE REFACTORING

Nasagh et al.24 proposed the fuzzy genetic automatic refactoring approach (FGARA) to enhance software maintainability and flexibility. A graph

model is utilized as the core depiction scheme and measures load, betweenness, out-degree, in-degree, and closeness centrality to determine the

program’s code smell. Then, the employed fuzzy method is joined with the GA to refactor the code utilizing the graph-related features. It is exposed

that the suggested method can recognize 68.92% of the bad classes like the Fontana dataset and refactors 77% of the types properly concern-

ing the coupling processes. This is a remarkable result between the existing refactoring process and studies considering bad smells identification

and refactoring. Sharif25 found extract class refactoring in Vb.Net classes using the Code Analysis Tool (CAT). Thus, this article aims to create a

tool that aids developers in spotting potential refactoring opportunities. Both refactoring actions and the refactoring proposed methodology are

taken into account. They concentrated on Extract Class when it came to refactoring. Predicting the likelihood of code reworking is possible using

object-oriented metrics. Two refactoring factors are combined to indicate the possibility of refactoring efforts and to identify the classes concerned

with those efforts.

The tool recognized 11 out of 14 results, giving them an accuracy rate of 79%. Besides assisting software developers in enhancing their code,

this research could provide additional information about how refactoring enhances systems. Mohan and Greer26 discussed the Many-Objective

Approach (MOA) for Investigating Automated Refactoring. Experiments have been built to compare the many-objective method against a

mono-objective method that only utilizes a single objective to measure the quality of the software. Diverse permutations of the goals were com-

pared and tested to see how well the other goals could work together in a multi-objective refactoring method. The eight methods are verified

on six various open-source Java programs. The many-objective method gives a better objective score than the mono-objective method and in

less period.

However, the priority and component recentness purposes are less effective in many/multi-objective setups when used together. Meng and

Su27 deliberated the worst-case execution time (WCET) optimization strategy based on source code refactoring. The framework leads program-

mers through an appropriate sequence to look for refactoring possibilities. The worst-case execution path (WCEP) is first removed from a control

flow chart of the target program in this respect. The WCEP is mapped using the back annotation approach to the source code. An abstract syn-

tax tree-based invariant path identification technique is created to recognize the continuous pathways from the WCEP source level. According to

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHITTI BABU AND SETHUKARASI 3 of 15

guidelines and loop statements, the source code is split into four optimization zones with consistent priority. This reduces the search scope and pre-

vents incorrect refactoring. This is the foundation on which refactoring is initially carried out, which in the same location has the lowest costs. A cost

model of source code refactoring is developed to support the technique.

Based on the above survey, there is a lack of proper tools in existing models. Hence, this paper has suggested the DNNFF model using a genetic

algorithm. The subsequent section deliberates the proposed DNNFF model briefly.

3 DEEP NEURAL NETWORK-BASED FITNESS FUNCTION (DNNFF)

Code refactoring is restructuring computer codes without adding or changing functionality and external behavior. There are several ways to

refactoring, and it most often encompasses applying a sequence of standardized, basic activities, known as micro-refactorings. Refactoring

is a process to enhance the existing code quality. It operates by employing a sequence of small stages, every of which changes the inter-

nal structure of the code while conserving its external behavior. Our proposed DNNFF method proceeds as input to the system to refac-

tor a comprehensive list of probable refactoring categories and the number of developers’ connections during the search progression. It

produces as output the better refactoring series that enhances the system quality. Our method comprises two major elements: the learn-

ing module (LGA) and the interactive component (IGA). The algorithm starts initially by performing the interactive (IGA) component, where

the developer assesses the refactoring resolutions manually produced by genetic algorithms for several iterations. The developer assesses

the viability and the quality/efficacy of the recommended refactoring one by one since every refactoring resolution is a series of refactor-

ing operations. Therefore, based on his inclinations, the developer classifies all the recommended refactorings as better or not. After several

iterations of the interactive (IGA) element, every developer’s assessed solutions are reflected training set for the second element, LGA of

algorithms.

Figure 1 shows the model refactoring process. The learning genetic algorithm module component executes a DNN to produce a predictive

model to estimate the refactoring solutions’ evaluation in the following iteration of the genetic algorithm. Therefore, our method does not require

the description of fitness functions. The DNN was the best accurate predictor in this investigation, even when dealing with noisy and poor data.

There are multiple layers to the structure, and the weights of each associate have been set at random at the beginning of training. As far as artificial

neurons go, sigmoid functions suffice with continuous data. Networks can be trained by using an iterative learning method. Two factors determine

how well it works. First, momentum factors prevent local minima by reducing the weights of the system. In addition, the learning ratio affects how

quickly weight loss occurs.

F I G U R E 1 Model refactoring process

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 15 CHITTI BABU AND SETHUKARASI

F I G U R E 2 Proposed DNNFF model

Figure 2 shows the proposed DNNFF model. This article deliberates the general and new classification algorithm for outlier prediction models

and refactoring code clones classification models to classify the test instances as unknown or recognized class sizes. Our classifier models’ enhanced

efficiency depends upon their locked set validations. Model validation in deep learning is the progression whereby train models are assessed with

the testing dataset. The testing datasets in closed set validations comprise instances owned by known classes. This study ran outlier algorithms

for the dataset to determine the data point with inconsistencies or differences considerably from the other provided data point. Formerly, the data

point class is altered into an unidentified class. After predicting outlier data points, this study builds our closed-set classification model and analyses

their efficiency after training: this study trains and tests our classifier with a vector of the dataset. The outlier factors are the abnormality score

of every sample. It predicts outliers about their adjacent utilizing k-nearest neighbors (KNN) for approximating the confined density. It predicts

subordinate density than neighbors, deliberates outliers, and modifies the unidentified class to datasets. Our model is a stage-by-stage method, and

first, this study standardized every source code fragment into special token series. Furthermore, syntax analysis and existing lexical tools transform

source code fragments into abstract syntax trees to predict each block from the given source file. In conclusion, extracted features from every

code fragment utilizing the Java Development Tools. Then, this study formed pairs of examples by the feature vector from the actual data. This

study feeds the feature vector of two target blocks to the feature vector datasets and passes it via confined outlier element algorithms for outlier

prediction.

Figure 3 shows the refactoring recommendation model. Deep learning is empathetic to the fundamental learning principles via computer

science, statistics, and mathematics. It is a division of artificial intelligence that aims to construct statistical models based on information

from famous training groups for making predictions or decisions without being unambiguously programmed. Deep learning comprises several

sub-fields and applications: neural networks, statistical learning approaches, data mining, example-based learning, genetic algorithm, natural

language processing (NLP), image recognition, and improved learning. This study adopts a deep learning algorithm to construct a detection

model for identifying refactored categories. For every classifier, the default configuration and variables are recommended. Our system has

two stages, testing and training, like any other deep learning model. This study uses marked pairs of refactored codes from a provided cor-

pus in training. This study trains and tests the model utilizing classification models, from the popular KNN and Bagging model to a newly

published class execution, solving classification and regression problems. Forest by Penalizing Attributes is a decision forest algorithm con-

structing sets of precise decision trees utilizing the powers of every non-class attribute in datasets and concurrently impressive penalty

(inconvenient weight).

Data used to train an application or machine learning approach to simulate the desired outcome is training data. The algorithm analysts employ

to train the machine can be evaluated based on the accuracy and efficiency measured by the testing data. It is predefined data that is used to compare

with the analytical results.

In this context, “Refactoring” refers to rearranging computer code without altering the code’s exterior functions and behaviors. Refactoring

can take several forms, but the most common one is the application of a succession of standardized, fundamental activities, which are frequently

referred to as micro-refactoring. Many social media applications use PHP, and anyone can refactor the software coding using the proposed technique

without changing the actual output.

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHITTI BABU AND SETHUKARASI 5 of 15

F I G U R E 3 Refactoring recommendation model

The data used in the training dataset must be consistent, which used to be part of the learning process. This study uses the Min-max approach

because it is one of the most accurate approaches. This study utilized the subsequent data depiction of the genetic algorithm-based learning issue

utilizing DNN for software refactorings. Let us signify by D the training set of the DNN. It is self-possessed of a set of couples that symbolize the

refactoring series and its assessment.

D = {(Y1x1) , (Y2x2) , (Y3x3) , … (Ylxl) , … (Ymxm)} , l ∈ [1,m]. (1)

As shown in Equation (1) where, Yl denotes the refactoring sequence signified as Yl =
[
yl1, yl2, … ylt, … ylq

]
, t ∈ [1, q], xl indicates the assessment

linked with the lth refactoring series in the range xl ∈ [0,1].
Let us indicate by P the matrices that involve numerical value connected to the set of refactoring and by X the vectors that comprise numer-

ical value demonstrating xl assessments. P is composed of m line and q column where m is equivalent to the number of refactoring series and q is

equivalent to the number of solutions.

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11 y12 · · · y1q

y21 y22 · · · y2q

· · · · · · ⋱ ⋮

· · · · · · ⋱ ⋮

· · · · · · ⋱ ⋮

ym1 ym2 · · · ymq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮

⋮

⋮

xm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

The probability O
(

rj∕Ci

)
for particular refactoring types rj to be chosen when a particular code smell Ci is linked with the chosen element.

• Let Nm

(
Ci, rj

)
be the overall number of refactoring types rj that is linked with code smell Ci and

• Let N (Ci) be the overall number of refactorings linked with Ci, then

The probability of O
(

rj∕Ci

)
is computed as follows:

O
(

rj∕Ci

)
= Nm

(
Ci, rj

)
∕N (Ci) . (3)

An initial survey was conducted to determine which source code element will be used for each refactoring type. Second, all refactorings involving

the identical source code element are clustered together. It was determined how likely every given refactoring with a given sort of source code will

be used since each refactoring has its component. Refactorings are always planned when a certain piece of source code has been chosen as the focus

of a particular effort. These calculations have been done as follows:

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 15 CHITTI BABU AND SETHUKARASI

• Let Mj,i

(
ei, rj

)
be the number of respondents who chosen the specific source code component of the type ei for particular refactoring

types rj.

• Let Mj (ei) be the number of respondents who chosen the specific source code component of the type ei to employ refactorings.

• Let O
(

rj, ei

)
be the probability of employing specific refactoring types rj while the source code component of types ei is chosen.

O
(

rj, ei

)
= Mj,i

(
ei, rj

)
∕Mj (ei) . (4)

Technique name is the most frequently refactored source code element and thus makes it the most common source code pick while refactoring,

according to this study. Based on the feedback to a survey, this report forecasts which refactorings should be placed first on a refactoring menu.

Source code components and code smells are used to make the forecasts. This study examines how a code smell affects a person’s decision-making

process. Code smell has been linked to the refactorings in the survey since the first refactoring was discovered. The computations have been carried

out as follows:

• Let M
(

ei,Ci, rj

)
be the overall number of chosen source code elements of types ei when the source code is associated with code smells of types Ci

and the employed refactoring type rj.

• Let M (ei,Ci ) be the overall number of chosen source code elements of types ei that is linked with code smells of types Ci.

The probability of a refactoring rj to be ranked on top of the refactoring menu will be provided by:

M
(

ei,Ci, rj

)
= M

(
ei,Ci, rj

)
∕M (ei,Ci) . (5)

The quality criterion is assessed utilizing fitness functions provided in expression 6. When the number of code defects decreases after refactorings,

the value of quality increases. This method returns to the number of defects predicted earlier refactorings and the number of design flaws after

refactoring (detected utilizing the rules on smell detection).

Figure 4 shows the flow chart of refactoring stages on code quality. This research aims to measure the influence of refactoring on code quality by

utilizing different internal and external software quality attributes to improve its quality. The study uses external and internal attributes to attain the

above objective. Most of the earlier research concentrated on either external or internal attributes. Therefore, this research primarily concentrates

F I G U R E 4 Flow chart of refactoring stages on code quality

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHITTI BABU AND SETHUKARASI 7 of 15

F I G U R E 5 Example: Simple NumericValues class

on measuring both scales distinctly to measure the effect of the refactoring on the code quality. Internal quality attributes are utilized to improve

the impact of code refactoring on software quality. To calculate the effect of refactoring on external quality characteristics, the five quality attributes

utilized in this research are reusability, maintainability, efficiency, understandability, and performance. The following stages show the procedure

of refactoring that is employed to measure the effect of software refactoring on both external and internal quality attributes for improving the

code quality: Determining the code that must be refactored, identifying the refactoring methods that be employed, Undertaking that the applied

refactoring techniques maintain the behavior of software after refactoring, Applying the selected refactoring methods, Assessing the influence

of refactoring methods on both external and internal software quality attributes, Keeping the determination between the software that has been

refactored and other software configurations.

A simple NumericValues class is taken as example as in Figure 5 to refactor using the proposed approach. The NumericValue class takes two

integer numerals as input and performs different operations like finding maximum, minimum, and so forth. The refactored version of the method

max is shown in Figure 6. Predicting defects depends on the metrics-based rule in line with which code fragments can be categorized as design

defects or not (without likelihood/risk scores), that is, 0 or 1. The defect correction ratio is described by:

DCR = 1 − Defect after applying refactorings
Defect befor applying refactorings

. (6)

Refactoring Operation (RO) are categorized into two categories: High-Level RO (HLR) and Low-Level RO (LLR). A high-level RO is a series of two or

more RO. A low-level RO is a basic refactoring containing one basic ROs. The weight𝜔j Every RO is an integer value in the array [1, … ,3] reliant on

code fragments’ difficulty and change effect. For refactoring solutions containing p ROs, the code changes scores are calculated as:

code changes = −
p∑

j=1

𝜔j. (7)

This study defines the following function to calculate similarity scores among suggested refactoring operations and recorded code change:

Similarity refactoring history (RO) =
m∑

i=1

ei. (8)

As shown in Equation (8), where, m denotes the number of the documented refactoring operation employed to the model in the past,

and ei indicates refactoring weights that redirects the similarity among the recommended refactoring operations (RO) and notes refactoring

operations i.

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 15 CHITTI BABU AND SETHUKARASI

F I G U R E 6 Path representation of code

This study calculates the semantics similarity among actors utilizing a data retrieval-based method, explicitly cosine similarity, as illustrated in

expression 9. Every actor is signified as m-dimensional vectors, where every dimension relates to vocabulary terms. The cosine of the angle among

two vectors has been measured as a pointer of similarity. Utilizing cosine similarity, the conceptual likeness among two actors c1 and c2 is identified

by:

Sim (c1, c2) = Cos
(

c⃗1, c⃗2

)
= c⃗1 ⋅ c⃗2

‖‖c⃗1
‖‖ × ‖‖c⃗2

‖‖
=

∑m
j=1𝜔j,1 × 𝜔j,2

√∑m
j=1𝜔

2
j,1 ×

√∑m
j=1𝜔

2
j,2

. (9)

As discussed in Equation (9) where, c⃗1 =
(
𝜔1,1, … 𝜔m,1

)
denotes term vectors respective to actors c1 and c⃗2 =

(
𝜔1,2, … 𝜔m,2

)
is term vectors

respective to c2. The weights𝜔j,i can be calculated utilizing data retrieval-based methods like the term frequencies.

Figure 6 shows the Path representation of the code. To use machine learning techniques with source code, we must first obtain a numerical

representation of the code fragments. To accomplish this, code2vec, a neural technique that learns distributed vectors (embeddings) of code frag-

ments based on their syntactic structure and semantic information captured in method and identifier names, was used. This study first must get a

numerical depiction of the code fragment to use deep learning methods when working with source codes. First, the method parses a code snippet

into an Abstract Syntax Tree (AST) and extracts a syntactic path between every leaf node negotiating via their lowermost ancestor. Every path is

denoted as a series of intermediary Abstract Syntax Tree nodes among two leaf nodes, and the arrow demonstrates the Abstract Syntax Tree route.

The whole code snippet has measured a bag of path settings. The system learns numeric vectors for every element of path contexts (i.e., two leaf

nodes and a path among them). Then three vectors are concatenated into a single vector named pooled context vectors. To aggregate the data from

every path context into one vector representing the whole code fragment, the method employs the attention mechanisms that compute a weighted

mean overall united context vector by allocating higher weight to the path that seizure more significant semantic data code fragments. Path-context

is defined as a tuple of two nodes and a corresponding path between them. For example, path-context from Figure 5 is represented as (a, Name ↑

BinaryExpression ↑ EnclosedExpression ↑ConditionalExpression ↓Name, a).

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHITTI BABU AND SETHUKARASI 9 of 15

The entire code snippet is regarded as a collection of path-contexts. The model learns a numeric vector for each component of a path-context

(i.e., two leaf nodes and a path between them), and then three vectors are concatenated into a single vector called combined context vector. The

approach employs the attention mechanism, which computes a weighted average over all combined context vectors by assigning greater weight

to paths that capture more important semantic information for this code fragment, to aggregate the information from each path-context into one

vector that represents the entire code fragment. The 384-bit fixed length code vector that results can then be used in the prediction task. The authors

limit the length (number of nodes) and width (maximum allowed difference between sibling nodes) of paths to reduce sparsity and the amount of

training data. The resultant fixed-length code vectors of size can be additionally utilized in the forecasting task. This study limits the length and

paths “width to decrease the amount of training information and sparsity” (i.e., maximally permissible variance among sibling nodes). Based on these

embeddings, a system has been constructed to detect techniques terms from their bodies utilizing datasets. By definition, refactoring is the process

of rearranging the internal structure of a program without modifying its external behavior or features based on a Deep Neural Network. Refactoring

can be approached in various ways, although it typically involves carrying out a set of predefined, elementary procedures, also known as Software

Code Refactoring.

Consequently, the code2vec model learned to generate embeddings so that similar code snippets are allocated similar embeddings. The

proposed model suggests that these embeddings can be utilized for other tasks where this semantic similarity can be beneficial, like code summari-

sations, refactoring recommendations, and code searches. The proposed DNNFF increases the code change score, automatic refactoring score,

defect correlation ratio, refactoring precision ratio, flaw detection ratio, and execution time related to other models.

4 SIMULATION ANALYSIS

The study aims to assess our refactoring tools’ effectiveness and usefulness in practice. This study showed a non-subjective assessment with

potential designers who can use our refactoring tools.

4.1 Environmental setup

The proposed approach was tested using the hardware configuration of Intel Core i7 processor with 8 Gb RAM, 512 Gb SSD and software setup

of Microsoft Windows 10 64-bit operating system, Python 3.7 with TensorFlow 2.1. Empirical evaluation will be done using open-source software

models in this work.28 Let us now describe the datasets used to evaluate our methodology.

4.2 JMove’s dataset

In this section, we evaluate and compare our approach to existing refactoring recommendation tools. We decided to test our approach on two

datasets: in the first part, we test it on the manually prepared dataset used in Reference 29, and in the second part, we test it on a synthetic dataset.

In both cases, we use projects that were not encountered during the training phase and compare our results to those of the existing recommen-

dation tools, JDeodorant29 and JMove.29 They were chosen for comparison because they are publicly available and represent the state-of-the-art

in this field. JDeodorant is also commonly used as a reference in prior refactoring recommendation research. The following steps comprise the

evaluation. Using MoveMethodGenerator, we search for movable methods and possible target classes in each project in our datasets, as described

in below.

We evaluate the proposed method on seven open-source projects from Table 1 of JMove’s dataset. The table includes the project’s name,

version, number of classes (NOC), number of methods (NOM), and number of source code lines (LOC).

4.3 Synthetic dataset

To minimize the impact of a manual analysis of samples, we also evaluate our method using a synthetic data set. We extracted five high-quality

open-source projects from the publicly available synthetic dataset MoveMethodDataset, which was generated by the MoveMethodGenerator tool.

The projects utilized for this dataset are presented in Table 2 and differ from those used to train the model.

In the software development industry, these technologies have a wide range of capabilities and a high level of maturity. Code change score,

automatic refactoring score, defect correlation ratio, refactoring precision ratio, and flaw detection ratio are outcome measures used to evaluate

the suggested DNNFF model.

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 15 CHITTI BABU AND SETHUKARASI

TA B L E 1 Subject applications from JMove’s dataset

Application Version NOC NOM LOC

Weka 3.6.9 908 16,034 257,897

ant 1.8.2 760 8586 103,402

Freecol 0.10.3 535 6616 93,605

Jmeter 2.5.1 682 7392 81,222

Freemind 0.9.0 368 4074 53,782

Jtopen 7.8 1 1450 22,143 340,752

maven 3.0.5 154 1568 71,065

TA B L E 2 Subject applications from the synthetic dataset

Application Version NOC NOM LOC

Pmd 6.13.0 1147 8637 119,430

Cayenne 4.2 1 499 12,164 275,450

Pinpoint 1.9.0 2551 17,024 290,974

Jenkins 1.51 768 6292 155,667

Drools 7.22.0 2758 27,793 680,234

i Code change score

Various code changes are made in the application of refactorings. The number of codes that are changed relates to the number of codes that

have been updated by adding, erasing, or moving operations (e.g., classes, procedures, fields, relationships, field references, etc.). Code changes must

be minimized when proposing refactoring to save effort and assist developers in comprehending modified/improved design. Most developers aim

to use the original design structure to address design faults as much as feasible. Therefore, it is important to reduce code changes and improve

software quality.

In certain scenarios, modifying design defects alter a high segment of the model radically or is occasionally equal to re-establishing a great part

of the model. The refactoring solution that fixes every defect is not optimal because of the high code modification/adaptation needed. Suppose the

suggested refactoring is beneficial to fix predicted defects with small code modifications by computing code change scores. The code change score

is described in Equation (7), and Figure 7 shows the code change score of the suggested model.

ii Automatic refactoring score

Automatic refactoring eliminates dead and redundant code without altering a system’s functionality and transforms unstructured codes into

well-structured codes and procedural codes into object-oriented codes. Refactoring is an iterative cycle of creating a lesser program conversion,

testing it to guarantee the exactness, and creating another minor transformation with unit testing. If at the first point a test fails, the final minor

change is uncompleted and repetitive differently. Figure 8 demonstrates the automatic refactoring score of the suggested DNNFF model.

iii Defect correlation ratio

This study validates the suggested refactoring operation to fix the design defect by computing the defect correction ratio (DCR) on benchmarks

collected from open-source models. The defect correction ratio is provided in expression 6, which relates to supplementing the rate of the num-

ber of design defects afterward refactorings (predicted utilizing the bad smell prediction rule) over the overall number of defects predicted earlier

refactorings. The proposed DNNFF model increases the defect correlation ratio related to other existing models, and Figure 9 shows the defect

correlation ratio.

iv Refactoring precision ratio

Refactoring precision denotes the outcomes of the code decisions. This study uses two validation approaches, automatic and manual valida-

tions, to assess the effectiveness of the suggested refactoring. For the manual validations, this study requested candidates of potential operators

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHITTI BABU AND SETHUKARASI 11 of 15

F I G U R E 7 Code change score

F I G U R E 8 Automatic refactoring score

of our refactoring tools to assess whether the recommended refactoring is possible and makes sense semantically. This study defines the metric

refactoring precision (RP), which resembles the number of significant refactoring operations (high-level and low-level), in terms of semantics, over

the overall number of recommended refactoring operations. Refactoring precision is provided by

RP = Coherent Refactorings
Suggested Refactorings

∈ [1,0]. (10)

This study compares the suggested refactorings with the predictable ones utilizing existing benchmarks for automatic validation. Figure 10 signifies

the refactoring precision ratio.

v Execution time

It is significant to compare numerous execution outcomes with the execution period to assess our approach’s performance and stability. The

execution period for discovering the optimum refactoring solutions with several iterations was less than 48 min. Moreover, this study evaluates the

influence of the number of recommended refactorings on the defect correlation ratio, refactoring precision, reused refactorings, and code change

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 15 CHITTI BABU AND SETHUKARASI

F I G U R E 9 Defect correlation ratio

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

R
ef

ac
to

ri
ng

 P
re

ci
si

on
 R

at
io

 (%
)

Number of Code Files

FGARA
CAT
MOA
WCET
DNNFF

F I G U R E 10 Refactoring precision ratio

scores in five different executions. However, as these variables are independent, they can be effortlessly constructed consistent with the developers’

inclinations, for instance, if they want to decrease the execution period. Figure 11 shows the execution time.

Finding the best refactoring solutions across numerous iterations took less than 48 min.

vi Flaw detection ratio

This study proposed the DNNFF model to syndicate known approaches for result design flaws based on metrics with a deep learning process,

such that design flaw detection is flexible to diverse views. When employing deep learning to intention flaw detection, measuring the performance

compared to human intuition is necessary. This study depends on metrics to perceive design flaws. Adaption to the necessities of distinct users

employing deep learning techniques has been added. A recent study states that design flaws in the object-oriented program can generate fraudu-

lent code and propose automatic design flaw detections, using multi-pattern matching and detection rules reuse. Figure 12 demonstrates the flaw

detection ratio of the suggested DNNFF model.

The results of various test parameters are depicted in a graphical form in the simulation analysis. There are comparisons between the proposed

DNNFF model and other approaches in Figures 7–11. According to Figures 7–11, this new method outperforms the old approaches in Code Change

Score, Automatic Refactoring Score, Defect Correlation Ratio, Refactoring Precision Ratio, execution time, and Flaw Detection Ratio.

To determine a DNNFF model which is most effective, on our dataset, in identifying the refactoring related commits we investigated the per-

formance of four well-known ML algorithms (i.e., EPRA, CAT, MOA, and WCET). Note that, the evaluation of our approach in this study will base on

such ML algorithms. The accuracy of identifying refactoring related commits is critical in deciding whether a feature request under implementation

would demand refactoring or not. According to Figures 7–11 the code change score of predicting refactoring related commits ranges from 68.15%

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHITTI BABU AND SETHUKARASI 13 of 15

F I G U R E 11 Execution time

F I G U R E 12 Flaw detection ratio

to 98.70%, whereas the Automatic Refactoring Score ranges from 67.22% to 97.30%. From the above diagram we observe that, the DNFF model

appeared to be the best performing classifier on our dataset. It recorded a Defect Correlation Ratio, Refactoring Precision Ratio, Execution Time,

and Flaw Detection Ratio ranges from 67.61% to 96.90%, 55.11% to 95.90%, 30.32% to 10.02%, and 98.53% to 94.40%, respectively. The suggested

DNNFF model speeds up the execution time while increasing the code change score, automatic refactoring score, defect correlation ratio, refac-

toring precision ratio, and flaw detection ratio. In contrast to the Code Analysis Tool, the Many-Objective Approach, and the Worst-Case Execution

Time, Fuzzy Genetic Automatic Refactoring (FGARA) is a preferred choice.

5 CONCLUSION AND FUTURE WORKS

This article presented an interactive refactoring method that does not need a description of fitness functions. The designer is requested to assess

manually refactoring resolutions recommended using Genetic Algorithms (GA) for minimum iterations; then, these instances are utilized as train-

ing sets for the DNNs to assess the solutions of the genetic algorithm in the succeeding iterations. This study evaluates our method for open-source

models. This research reports the outcomes on the effectiveness and efficiency of our method compared to existing methodologies. A labeled

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 15 CHITTI BABU AND SETHUKARASI

training dataset of Unified Modeling Language class diagrams metric values is utilized to infer a function that labels the figures with functional

decompositions. Flaw detection is trailed by employing a sequence of the refactoring operation that discourse functional decomposition. The exper-

imental results demonstrate that the suggested DNNFF model enhances the code change score of 98.7%, automatic refactoring score of 97.3%,

defect correlation ratio of 96.9%, refactoring precision ratio of 95.9%, flaw detection ratio of 94.4%, and reduces the execution time of 10.2% com-

pared to other existing methods. The outperformance is statistically significant, and the ranking is varied across different metrics. Compared to

other well-known fuzzy genetic automatic refactoring techniques, the suggested DNNFF model excels in areas including code change score, auto-

matic refactoring score, defect correlation ratio, and execution time. This study plans to examine empirical research to deliberate further structures

and a higher set of refactoring operations in our experimentations in future work. This study plans to extend our method to reflect refactoring

opportunities utilizing our interactive learning method.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest in regard to this research paper and the work quoted in this paper.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in repository name GHTorrent -Github at https://github.com/gousiosg/github-

mirror.

ORCID

Chitti Babu Karakati https://orcid.org/0000-0001-6260-6858

REFERENCES

1. Baqais AAB, Alshayeb M. Automatic software refactoring: a systematic literature review. Softw Qual J. 2020;28(2):459-502.

2. Amudha G, Narayanasamy P. Distributed location and trust based replica detection in wireless sensor networks. Wirel Pers Commun.

2018;102(4):3303-3321.

3. Paixão M, Uchôa A, Bibiano AC, et al. Behind the intents: an in-depth empirical study on software refactoring in modern code review. In: Proceedings of

the 17th International Conference on Mining Software Repositories; 2020:125-136.

4. Gunasekaran A, Narayanasamy P. Analysing the network performance of various replica detection algorithms in wireless sensor network. J Comput Theor
Nanosci. 2018;15(3):989-994.

5. Janarthanan R, Doss S, Baskar S. Optimised unsupervised deep learning assisted reconstructed coder in the on-nodule wearable sensor for human

activity recognition. Measurement. 2020;164:108050.

6. Lacerda G, Petrillo F, Pimenta M, Guéhéneuc YG. Code smells and refactoring: a tertiary systematic review of challenges and observations. J Syst Softw.

2020;167:110610.

7. Baskar S. Error recognition and correction enhanced decoding of hybrid codes for memory application. In: 2014 2nd International Conference on

Devices, Circuits and Systems (ICDCS). IEEE; 2014:1-6.

8. Nguyen NT, Liu BH. The mobile sensor deployment problem and the target coverage problem in mobile wireless sensor networks are NP-hard. IEEE Syst J.

2018;13(2):1312-1315.

9. Kaur S, Awasthi LK, Sangal AL. A brief review on multi-objective software refactoring and a new method for its recommendation. Arch Comput Methods
Eng. 2021;28(4):3087-3111.

10. Nguyen NT, Liu BH, Pham VT, Liou TY. An efficient minimum-latency collision-free scheduling algorithm for data aggregation in wireless sensor networks.

IEEE Syst J. 2017;12(3):2214-2225.

11. Gao J, Wang H, Shen H. Smartly handling renewable energy instability in supporting a cloud datacenter. In: 2020 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). IEEE; 2020:769-778.

12. Sheneamer AM. An automatic advisor for refactoring software clones based on machine learning. IEEE Access. 2020;8:124978-124988.

13. Shakeel PM, Baskar S, Fouad H, Manogaran G, Saravanan V, Montenegro-Marin CE. Internet of things forensic data analysis using machine learning to

identify roots of data scavenging. Fut Gen Comput Syst. 2021;115:756-768.

14. Kaur A, Kaur M. Analysis of code refactoring impact on software quality: a scientific explanation. Adv Aspects Eng Res. 2021;7:43-52.

15. Khalifa NEM, Taha MHN, Manogaran G, Loey M. A deep learning model and machine learning methods for the classification of potential coronavirus

treatments on a single human cell. J Nanopart Res. 2020;22(11):1-13.

16. Elhoseny M, Mohammed MA, Mostafa SA, et al. A new multi-agent feature wrapper machine learning approach for heart disease diagnosis. Comput Mater
Contin. 2021;67:51-71.

17. Khalilipour A, Challenger M, Onat M, Gezgen H, Kardas G. Refactoring legacy software for layer separation. Int J Softw Eng Knowl Eng.

2021;31(2):217-247.

18. Gupta BB, Prajapati V, Nedjah N, Vijayakumar P, Abd El-Latif AA, Chang X. Machine learning and smart card based two-factor authentication scheme

for preserving anonymity in telecare medical information system (TMIS). Neural Comput Appl. 2021;1-26. https://doi.org/10.1007/s00521-021-06152-x

19. Kaur S, Awasthi LK, Sangal AL. A review on software refactoring opportunity identification and sequencing in object-oriented software. Rec Adv Electric
Electron Eng. 2021;14(3):252-267.

20. Manogaran G, Alazab M, Saravanan V, et al. Machine learning assisted information management scheme in service concentrated iot. IEEE Trans Ind Inform.

2020;17(4):2871-2879.

21. AlOmar EA, Mkaouer MW, Newman C, Ouni A. On preserving the behavior in software refactoring: a systematic mapping study. Inform Softw Technol.
2021;106675:106675.

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/gousiosg/github%E2%80%90mirror
https://github.com/gousiosg/github%E2%80%90mirror
https://orcid.org/0000-0001-6260-6858
https://orcid.org/0000-0001-6260-6858


CHITTI BABU AND SETHUKARASI 15 of 15

22. Ullah F, Wang J, Jabbar S, Al-Turjman F, Alazab M. Source code authorship attribution using hybrid approach of program dependence graph and deep

learning model. IEEE Access. 2019;7:141987-141999.

23. Alazab M. Profiling and classifying the behavior of malicious codes. J Syst Softw. 2015;100:91-102.

24. Nasagh RS, Shahidi M, Ashtiani M. A fuzzy genetic automatic refactoring approach to improve software maintainability and flexibility. Soft Comput.

2021;25(6):4295-4325.

25. Sharif KY. Code analysis tool to detect extract class refactoring activity in Vb. Net classes. Turk J Comput Math Educ (TURCOMAT). 2021;12(3):2172-2177.

26. Mohan M, Greer D. Using a many-objective approach to investigate automated refactoring. Inform Softw Technol. 2019;112:83-101.

27. Meng F, Su X. WCET optimisation strategy based on source code refactoring. Clust Comput. 2019;22(3):5563-5572.

28. https://www.kaggle.com/datasets/aroojanwarkhan/fitness-data-trends.

29. Terra R, Valente MT, Miranda S, Sales V. Jmove: a novel heuristic and tool to detect move method refactoring opportunities. J Syst Softw. 2018;138:19-36.

How to cite this article: Karakati CB, Thirumaaran S. Software code refactoring based on deep neural network-based fitness function.

Concurrency Computat Pract Exper. 2023;35(4):e7531. doi: 10.1002/cpe.7531

 15320634, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7531 by U

niversity O
f L

atvia, W
iley O

nline L
ibrary on [13/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.kaggle.com/datasets/aroojanwarkhan/fitness-data-trends

	Software code refactoring based on deep neural network-based fitness function 
	1 INTRODUCTION TO SOFTWARE CODE REFACTORING
	2 RELATED WORKS ON SOFTWARE CODE REFACTORING
	3 DEEP NEURAL NETWORK-BASED FITNESS FUNCTION (DNNFF)
	4 SIMULATION ANALYSIS
	4.1 Environmental setup
	4.2 JMove's dataset
	4.3 Synthetic dataset

	5 CONCLUSION AND FUTURE WORKS

	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

